136k views
0 votes
Find and simplify the difference quotient of the form
\fra(f(x)-f(a))/(x-a) , x\\eq a


f(x)=3x^2+x ,a =4

What is the difference quotient?

2 Answers

3 votes

If
f(x)=3x^2+x, then


f(4) = 3\cdot4^2+4 = 52

so that the difference quotient is


(f(x)-f(a))/(x-a) = (3x^2+x-52)/(x-4)

Factorize the numerator:


3x^2+x-52 = (3x+13)(x-4)

Then for x ≠ 4, we have


(f(x)-f(a))/(x-a) = ((3x+13)(x-4))/(x-4) = 3x+13

User Piotrga
by
4.8k points
4 votes

Answer: 3x + 13

Explanation:


f(x)=3x^2+x\\f(a)=3a^2+a\\f(4)=3*4^2+4=52\\\\f(x)-f(4)=3x^2+x-52=(x-4)(3x+13)\\\\(f(x)-f(4))/(x-4) =(3x^2+x-52)/(x-4) \\\\if\ x \\eq 4\ then \\\\(f(x)-f(4))/(x-4) =((x-4)(3x+13))/(x-4) \\\\=3x+13\\

User Eric Wich
by
5.1k points