205k views
5 votes
Which is not a form of potential energy?

gravitational
chemical
elastic
thermal

User Ajberry
by
4.7k points

2 Answers

3 votes

Answer:Thermal Energy is not a form of potential energy

Step-by-step explanation:

User Ember Arlynx
by
4.5k points
2 votes

To Solve:-


\red{➤}\:
\sf ({(3)/(2)})^(-1)÷ ({(-2)/(5)})^(-1)


\\

Solution:-

Since the power is in negetive,we write the reciprocal of the number and then solve it like positive exponents-


\begin{gathered}\\\quad\longrightarrow\quad\sf( {(3)/(2)})^(-1)÷ ({(-2)/(5)})^(-1)\\\end{gathered}


\begin{gathered}\\\quad\longrightarrow\quad\sf ({(2)/(3)})^(1)÷ ({(5)/(-2)})^(1)\quad (a^1=a)\\\end{gathered}


\begin{gathered}\\\quad\longrightarrow\quad\sf (2)/(3)÷ (5)/((-2))\\\end{gathered}


\begin{gathered}\\\quad\longrightarrow\quad\sf (2)/(3)×((-2))/(5)\\\end{gathered}


\begin{gathered}\\\quad\longrightarrow\quad\sf (2×(-2))/(3×5)\\\end{gathered}


\begin{gathered}\\\quad\longrightarrow\quad\boxed{\sf{ (-4)/(15)}}\\\end{gathered}

Know More-

Laws of Exponents-


\sf a^m×a^n = a^(m+n) \\ </p><p> \sf a^m/a^n = a^(m-n) \\ </p><p> \sf{(a^m)}^n = a^(mn) \\ </p><p> \sf a^n/b^n = (a/b)^n \\ </p><p> \sf a^0 = 1 \\ </p><p> \sf a^(-m )= 1/a^m</p><p>

User Jmargolisvt
by
4.1k points