45.1k views
1 vote
Which is not a form of potential energy?

gravitational
chemical
clastic
thermal

User Jhso
by
3.6k points

2 Answers

4 votes

Step-by-step explanation:


\underline{\underline{\large\bf{Given:-}}}


\red{➤}\:
\textsf{}
\sf Points\:(2, 4), (0,3)\: and\; (k, -4) \:are\; collinear


\underline{\underline{\large\bf{To Find:-}}}


\orange{☛}\:
\textsf{Value of k}
\sf


\\


\underline{\underline{\large\bf{Solution:-}}}\\

Let us consider these points on a line AC such that point B lies in between points A and C as these lines are collinear -


\\A(2,4) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: B(0,3) \: \: \: \: \: \: \: \: \: \: \: \: C(k,4)\\ \bull \frac{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{} \bull \frac{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{} \bull \\

If lines are collinear then,


\green{ \underline { \boxed{ \sf{AB+BC=AC}}}}


\\

We will find distance between points by distance formula-


\red{\underline{\boxed{\sf{Distance=√((x_2-x_1)^2+(y_2-y_1)^2)}}}}


\\(x_1,y_1) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (x_2,y_2)\\ \bull \frac{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{} \bull \frac{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{} \bull \\


\begin{gathered}\\\\longrightarrow\quad \sf AB = \sqrt{(0 - 2) ^(2) + (3 - 4) ^(2) } \\\end{gathered}


\begin{gathered}\\\\longrightarrow\quad \sf √(4 + 1 ) \\\end{gathered}


\begin{gathered}\\\\longrightarrow\quad \sf √(5 ) \\\end{gathered}


\\


\begin{gathered}\\\\longrightarrow\quad \sf BC = \sqrt{(k - 0) ^(2) + (-4-3) ^(2) } \\\end{gathered}


\begin{gathered}\\\\longrightarrow\quad \sf √(k^2+49 ) \\\end{gathered}


\\


\begin{gathered}\\\\longrightarrow\quad \sf AC = \sqrt{(k - 2) ^(2) + (-4 - 4) ^(2) } \\\end{gathered}


\begin{gathered}\\\\longrightarrow\quad \sf √(k^2+4-4k+64 ) \\\end{gathered}


\\


\begin{gathered}\\\\longrightarrow\quad \sf AC = √(k^2-4k+68 ) \\\end{gathered}


\purple{ \underline { \boxed{ \sf{AB+BC=AC}}}}


\\\underline{\tt\pink{Putting \:Values-}}\\


\begin{gathered}\\\quad\longrightarrow\quad \sf √(5 )+√(k^2+49 ) = √(k^2-4k+68 )[ \\\end{gathered}

Squaring Both Sides-


\begin{gathered}\\\quad\longrightarrow\quad \sf (√(5 )+√(k^2+49 ) )^2= (√(k^2-4k+68))^2 \\\end{gathered}

User CTOMarc
by
3.1k points
3 votes
Clastic is not a form of potential energy
User TheDuncs
by
4.0k points