97.0k views
24 votes
I don’t know how to do part a

I don’t know how to do part a-example-1

1 Answer

11 votes

(a) The claim is made for all positive integers n, so we start at n = 1. We have


\displaystyle \sin(x) \sum_(k=1)^1 \sin(2kx) = \sin(x) \sin(2x) = \sin(1x) \sin((1+1)x)

so the claim is true for the base case.

Suppose the claim is true for n = m, so that


\displaystyle \sin(x) \sum_(k=1)^m \sin(2kx) = \sin(mx) \sin((m+1)x)

We want to use this to establish the identity for n = m + 1. That is, we want to prove that


\displaystyle \sin(x) \sum_(k=1)^(m+1) \sin(2kx) = \sin((m+1)x) \sin((m+2)x)

Working with the left side, we remove the last term from the sum and we have


\displaystyle \sin(x) \sum_(k=1)^(m+1) \sin(2kx) = \sin(x) \sum_(k=1)^m \sin(2kx) + \sin(x) \sin(2(m+1)x) \\\\\\ = \sin(mx) \sin((m+1)x) + \sin(x) \sin(2(m+1))x

Recall the angle sum identities:


\sin(x + y) = \sin(x) \cos(y) + \cos(x) \sin(y)


\sin(x - y) = \sin(x) \cos(y) - \cos(x) \sin(y)


\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)


\cos(x - y) = \cos(x) \cos(y) + \sin(x) \sin(y)

Then


\sin(2(m+1)x) = 2 \sin((m+1)x) \cos((m+1)x)

so we can remove a factor of sin((m + 1) x) :


\displaystyle \sin(x) \sum_(k=1)^(m+1) \sin(2kx) = \sin((m+1)x) \bigg(\sin(mx) + 2 \sin(x) \cos((m+1)x)\bigg)

and we also have


2 \sin(x) \cos((m+1)x) = \sin(x+(m+1)x) + \sin(x - (m+1)x) \\\\ = \sin((m+2)x) + \sin(-mx) \\\\ = \sin((m+2)x) - \sin(mx)

Then the sin(mx) terms cancel, and we're left with what we wanted:


\displaystyle \sin(x) \sum_(k=1)^(m+1) \sin(2kx) = \sin((m+1)x) \sin((m+2)x)

and the induction proof is complete.

(b) From the identities mentioned earlier, one has


\sin\left(x - \frac\pi4\right) = \sin(x) \cos\left(\frac\pi4\right) - \cos(x) \sin\left(\frac\pi4\right) \\\\ = (\sin(x) - \cos(x))/(\sqrt2)

Then


\sin^2\left(x - \frac\pi4\right) = \frac{(\sin(x) - \cos(x))^2}2 \\\\ = \frac{\sin^2(x) - 2 \sin(x) \cos(x) + \cos^2(x)}2 \\\\ = \frac{1 - \sin(2x)}2


We can then rewrite the sum as


\displaystyle \sum_(k=1)^(369) \sin^2\left(\frac{k\pi}5 - \frac\pi4\right) = \frac12 \sum_(k=1)^(369) \left(1 - \sin\left(\frac{2k\pi}5\right)\right) \\\\ = \frac12 \sum_(k=1)^(369) 1 - \frac12 \sum_(k=1)^(369) \sin\left(\frac{2k\pi}5\right)

Recall that


\displaystyle \sum_(k=1)^n 1 = 1 + 1 + \cdots + 1 = n

For the sum involving sine, let x = π/5. Then using the result from part (a),


\displaystyle \sin\left(\frac\pi5\right) \sum_(k=1)^(369) \sin\left(\frac{2k\pi}5\right) = \sin\left(\frac{369\pi}5\right) \sin\left(\frac{370\pi}5\right)

and this sum vanishes, since sin(370π/5) = sin(74π) = 0.

It follows that


\displaystyle \sum_(k=1)^(369) \sin^2\left(\frac{k\pi}5 - \frac\pi4\right) = \frac12 \sum_(k=1)^(369) 1 = \boxed{\frac{369}2}

User Javier Diaz
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories