518,746 views
33 votes
33 votes

\huge \red{ \displaystyle \boxed{\mathfrak{{{Question-}}}}}

The total surface area of a cone whose radius is halved and slant height is doubled:-

\huge \pink{\frak{ Options - }}\\ \large{\tt{ \dashrightarrow 2 \pi r(l + r)}} \\ \large{\tt{ \dashrightarrow \pi r(l + (r)/(4) )}} \\\large{\tt{ \dashrightarrow \pi r(l + r)}} \\ \large{\tt{ \dashrightarrow 2\pi rl}} \\
\orange{\rule{100mm}{3.2pt}}
\large \gray{\sf \leadsto{ No \: Spam}}
\large{\sf \gray{ \leadsto Answer \: should \: explain}}

User Yvan Vander Sanden
by
2.5k points

1 Answer

18 votes
18 votes

Formula is


\\ \rm\Rrightarrow TSA=\pi(r+\ell)

Now

  • r is r/2
  • l is 2l


\\ \rm\Rrightarrow TSA=\pi\left((r)/(2)\right)\left((r)/(2)+2\ell\right)


\\ \rm\Rrightarrow TSA=(\pi r)/(2)\left((r+4\ell)/(2)\right)


\\ \rm\Rrightarrow TSA=(\pi r)/(2)* 2\left((r)/(4)+\ell\right)


\\ \rm\Rrightarrow TSA=\pi r(\ell+(r)/(4))

User Clare Liguori
by
2.8k points