For a function to be continuous at an x-value, say -17, you need to make sure two things line up:
The limit from the left equals the limit from the right.

This limit equals the functions value.

The left hand limit involves the first piece, f(x) = 20x + 1:
![\begin{aligned} \lim_(x \to -17^(-)) f(x) &= \lim_(x \to -17^(-)) (20x+1)\\[0.5em]&= 20(-17)+1\\[0.5em]&= -339\endaligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4xarghwy2kqmz6yy41f7vh5k5g1h0vtwp7.png)
The right hand limit invovles the second piece, f(x) = -10x^2:
![\begin{aligned} \lim_(x \to -17^(+)) f(x) &= \lim_(x \to -17^(+)) (-10x^2)\\[0.5em]&= -10\cdot (-17)^2\\[0.5em]&= -2890\endaligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kmi1uf1f5eggqgnd0t0hbx936y0rjzsjsj.png)
Since the two one-sided limits don't match, the function is not continuous at x=-17.