39.7k views
17 votes
If the Lenght of Rectangle is 10 cm and its Breadth is 15 cm . Then find the Area of Rectangle ?​

User Greg Lary
by
4.2k points

2 Answers

8 votes

Question :-

  • If the Lenght of Rectangle is 10 cm and its Breadth is 15 cm . Then find the Area of Rectangle ?

Answer :-

  • Area of Rectangle is 150² cm .


\rule {210pt} {2pt}

Given :-

  • Lenght of Rectangle = 10 cm
  • Breadth of Rectangle = 15 cm

To Find :-

  • Area of Rectangle = ?

Solution :-

As per the provided information in the given question, we have been given that the Lenght of Rectangle is 10 cm . Breadth of Rectangle is given 15 cm . And, we have been aksed to calculate the Area of Rectangle .

For calculating the Area , we will use Area of Rectangle Formula :-


  • \sf {Area \: of \: Rectangle = Lenght * Breadth}

Therefore , by Substituting the given values in the above Formula :-

⇒ Area of Rectangle = Lenght × Breadth

⇒ Area of Rectangle = 10 × 15

⇒ Area of Rectangle = 150

Hence :-

  • Area of Rectangle = 150² cm


\underline {\rule {210pt} {4pt}}

Additional Information :-


\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Square) = Side * Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _(Rectangle) = Lenght * Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Triangle) = (1)/(2) * Base * Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Parallelogram) = Base * Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _(Trapezium) = (1)/(2) * [ \: A + B \: ] * Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _(Rhombus) = (1)/(2) * Diagonal \: 1 * Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

User Lhache
by
5.0k points
11 votes

Answer:

Given ,

Length of rectangle = 10cm

Breadth of rectangle = 15cm

Now ,

Area of rectangle = length × breadth

‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎= ( 10 × 15 ) cm²

‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎ ‎‎= 150 cm²


\\

hope helpful ~

User Ahofmann
by
4.5k points