Consider the generating function of the sequence
, defined by
![A(z) = \displaystyle \sum_(n=0)^\infty a_nz^n = a_0 + a_1z + a_2z^2 + \cdots](https://img.qammunity.org/2022/formulas/mathematics/high-school/ajmcbuasikp0o8pidfxbfwrj6fnzq99raq.png)
(this is also known as the Z-transform of
)
While the given sequence isn't exactly defined for n = 0, we can use the recurrence to extend it to cover this case. For n = 0, we get
![a_2 - 7a_1 + 12a_0 = 0 \implies a_0 = -\frac16](https://img.qammunity.org/2022/formulas/mathematics/high-school/19e9tpp8zkq6jzq1ubwgbxud5s3849qkm5.png)
Since for all n ∈ {0, 1, 2, …} we have that
![a_(n+2)-7a_(n+1)+12a_n=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae1kurb4g111g5wlz3wcplw3v9swxo8pkl.png)
Multiplying both sides by
and summing over all n gives the relation
![\displaystyle \sum_(n=0)^\infty a_(n+2)z^n - 7 \sum_(n=0)^\infty a_(n+1)z^n + 12 \sum_(n=0)^\infty a_nz^n = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/z2dln2t2jhs15cncyaz8c3l9ltvpvhoqfl.png)
Manipulate the first two series to get them in terms of A(z) :
![\displaystyle \sum_(n=0)^\infty a_(n+2)z^n = \frac1{z^2}\sum_(n=0)^\infty a_(n+2)z^(n+2) \\\\ \sum_(n=0)^\infty a_(n+2)z^n = \frac1{z^2} \sum_(n=2)^\infty a_nz^n \\\\ \sum_(n=0)^\infty a_(n+2)z^n = \frac1{z^2}\left(\sum_(n=0)^\infty a_nz^n - a_0 - a_1z\right) \\\\ \sum_(n=0)^\infty a_(n+2)z^n = (A(z)-\frac16-z)/(z^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u2bxinu433smtehd99r7xy9i3aixpb5s80.png)
and
![\displaystyle \sum_(n=0)^\infty a_(n+1)z^n = \frac1z \sum_(n=0)^\infty a_(n+1)z^(n+1) \\\\ \sum_(n=0)^\infty a_(n+1)z^n = \frac1z\sum_(n=1)^\infty a_nz^n \\\\ \sum_(n=0)^\infty a_(n+1)z^n = \frac1z\left(\sum_(n=0)^\infty a_nz^n - a_0\right) \\\\ \sum_(n=0)^\infty a_(n+1)z^n = (A(z)-\frac16)/(z)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7zyzjwqvgfl98k91fr31hffwqtpxhff2ft.png)
The third series is simply A(z).
Solve this new recurrence for A(z) :
![\displaystyle (A(z)-\frac16-z)/(z^2) - (7A(z)-\frac76)/(z) + 12 A(z) = 0 \\\\ (A(z))/(z^2)-(7A(z))/(z) + 12A(z) = \frac1{6z^2}+\frac1z-\frac7{6z} \\\\ (A(z)-7zA(z)+12z^2A(z))/(z^2) = (1-z)/(6z^2) \\\\ (1-7z+12z^2)/(z^2)A(z) = (1-z)/(6z^2) \\\\ A(z) = (1-z)/(6(1-7z+12z^2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/csi7e66zp9d13p065vuzdd4x4f4h3c629p.png)
The next step is to find the power series expansion for A(z) to recover
. Factorize the denominator, then decompose A(z) into partial fractions:
![1-7z+12z^2 = (1-3z)(1-4z)](https://img.qammunity.org/2022/formulas/mathematics/high-school/olld6iauk456bdqq9q9z3s2rg0rll76j7r.png)
![\displaystyle (1-z)/((1-3z)(1-4z)) = \frac a{1-3z} + \frac b{1-4z} \\\\ 1-z = a(1-4z) + b(1-3z) \\\\ 1-z = a+b + (-4a-3b)z \\\\ \implies a=-2, b=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3lcrw6k2zuon5wourewmyplt2k6t8lbd4f.png)
![\implies \displaystyle A(z) = \frac16\left(\frac3{1-4z} - \frac2{1-3z}\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k9liyari0yaln8x3ladl4qlabpdpgp01zj.png)
Recall that for |z| < 1, we have
![\displaystyle \sum_(n=0)^\infty z^n = \frac1{1-z}](https://img.qammunity.org/2022/formulas/mathematics/high-school/yq11fx7glda7yo1w83pzmpm055xqs4nruw.png)
Then if |4z| < 1, we can write A(z) as the sum of two convergent geometric series,
![\displaystyle A(z) = \frac12 \sum_(n=0)^\infty (4z)^n - \frac13 \sum_(n=0)^\infty (3z)^n](https://img.qammunity.org/2022/formulas/mathematics/high-school/lhxuua4kttghw2p7ype1xunvd5czghdgb0.png)
and some rewriting to put this in the canonical G.F. form lets us easily pick out
.
![\displaystyle A(z) = \sum_(n=0)^\infty \left(\frac{(4z)^n}2 - \frac{(3z)^n}3 \right) \\\\ A(z) = \sum_(n=0)^\infty \left(\frac{2^(2n)}2 - \frac{3^n}3\right)z^n \\\\ A(z) = \sum_(n=0)^\infty \left(2^(2n-1) - 3^(n-1)\right)z^n](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae2z7w0phfxzbf9x6dykz2xcrr329rr6xp.png)
![\implies \boxed{a_n = 2^(2n-1) - 3^(n-1)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/h38yij44gdkqu7uszryfvblpslrlxy2h8d.png)