Answer:
c > 1
Explanation:
Given equation:
![x^2-2x+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/lyp6vc522ol60y7w0r8qkfsl77srizl3se.png)
General form of quadratic equation:
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
We can use the discriminant to determine the value of c for which the equation has no real roots.
![b^2-4ac < 0\implies \textsf{no real roots}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3j9zwbozqmcg4bh1o8l09yoaifc73r1554.png)
From the given equation:
Inputting these values into the discriminant formula:
![\implies (-2)^2-4(1)(c) < 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/psdo1l0zusi9e55lh4lutg9mgzhtq8yzs2.png)
![\implies 4-4c < 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/8kn5y8d5yjiyy4h9f0ycpel7bvy0o125rq.png)
![\implies 4 < 4c](https://img.qammunity.org/2023/formulas/mathematics/high-school/5la9rtprm5rqetpfhre9x7duh7iazl7g2p.png)
![\implies 1 < c](https://img.qammunity.org/2023/formulas/mathematics/high-school/zjmh6mria3mssyn6x0nsulvbwvgcf6v77h.png)
![\implies c > 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/vjnmu2emok4m5p7bjn3gatbfnbanocwl6o.png)