Answer:
see picture
Step-by-step explanation:
Step-by-step explanation:
Since we have an indeterminate form of type 00, we can apply the l'Hopital's rule:
limx→0 sin(2x)/sin(3x)= limx→0 d/dx(sin(2x))/ d/dx(sin(3x))
limx→0 d/dx(sin(2x))/d/dx(sin(3x) ) = limx→02cos(2x)/3cos(3x)
Substitute the variable with the value:
limx→02cos(2x)3cos(3x)=(23)
Therefore,
limx→0sin(2x)sin(3x)=23
Answer: limx→0sin(2x)sin(3x)=2/3