58.4k views
2 votes
Find the product of : (4sinθ + 3cosθ) (4sinθ – 3cosθ)

2 Answers

1 vote


\\ \sf\longmapsto (4sin\theta+2cos\theta)(4sin\theta-3cos\theta)


\boxed{\sf (a+b)(a-b)=a^2-b^2}


\\ \sf\longmapsto (4sin\theta)^2-(3cos\theta)^2


\\ \sf\longmapsto 16sin^2\theta-9cos^2\theta

User RudolphEst
by
6.0k points
5 votes

Explanation:

(4sin0 × 4sin0) +(4sin0 × -3cos0)+ (3cos0×4sin0) +(3cos0 × -3cos0)=

16 sin²0 - 12 sin0cos0 + 12 sin0cos0 -

9cos²0

= 16sin²0 - 9 cos²0

User Friesgaard
by
7.0k points