(1)
Combine multiplied terms into a single fraction
0.025(+2)=2.81
0.025(q+2)=2.810.025(q+2)=2.81
1(+2)40=2.81
\frac{1(q+2)}{40}=2.81401(q+2)=2.81
(2)
Multiply by 1
1(+2)40=2.81
\frac{1(q+2)}{40}=2.81401(q+2)=2.81
+240=2.81
\frac{q+2}{40}=2.8140q+2=2.81
3
Multiply all terms by the same value to eliminate fraction denominators
+240=2.81
\frac{q+2}{40}=2.8140q+2=2.81
40(+240)=40⋅2.81
40(\frac{q+2}{40})=40 \cdot 2.8140(40q+2)=40⋅2.81
4
Cancel multiplied terms that are in the denominator
40(+240)=40⋅2.81
40(\frac{q+2}{40})=40 \cdot 2.8140(40q+2)=40⋅2.81
+2=40⋅2.81
q+2=40 \cdot 2.81q+2=40⋅2.81
5
Multiply the numbers
+2=40⋅2.81
q+2={\color{#c92786}{40}} \cdot {\color{#c92786}{2.81}}q+2=40⋅2.81
+2=112.4
q+2={\color{#c92786}{112.4}}q+2=112.4
6
Subtract
2
22
from both sides of the equation
+2=112.4
q+2=112.4q+2=112.4
+2−2=112.4−2
q+2{\color{#c92786}{-2}}=112.4{\color{#c92786}{-2}}q+2−2=112.4−2
7
Simplify
Subtract the numbers
Subtract the numbers
=110.4