235k views
4 votes
The equation of a displacement-time curve of a particle is given by X =10t- 5t + 6 = 0. Find the instantaneous velocities at t = 2sec and t = 5sec.



1 Answer

4 votes


\\ \rm\hookrightarrow v={\displaystyle{\int}}sdt

Now


\\ \rm\hookrightarrow v={\displaystyle{\int}^5_2}10t-5t+6


\\ \rm\hookrightarrow v={\displaystyle{\int}^5_2}5t+6


\boxed{\sf {\displaystyle{\int}}x^n dx=(x^(n+1))/(n+1)}


\\ \rm\hookrightarrow v=\left[(5t^2)/(2)+6t\right]^5_2


\\ \rm\hookrightarrow v=\frac{5\left\{5)^2-(2)^2\right\}}{2}+6(5-2)


\\ \rm\hookrightarrow v=(5(25-4))/(2)+6(3)


\\ \rm\hookrightarrow v=(5(21))/(2)+18


\\ \rm\hookrightarrow v=(105)/(2)+18


\\ \rm\hookrightarrow v=52.5+18


\\ \rm\hookrightarrow v=70.5m/s

User Johan Svensson
by
4.7k points