234k views
0 votes
The polynomial p(x)=x^3-19x-30 has a known factor of (x+2)

Rewrite p(x) as a product of linear factors

User Ushika
by
4.3k points

2 Answers

6 votes

Answer:

(x+2) (x+3) (x-5)

Explanation:

x³-19x-30 = (x+2) (x²+ax-15) ... x³=x*(1*x²) while -30= (2)*(-15)

x³ + 0*x² - 19x -30 = x³ + (2+a)x² + (2a-15)x -30

2+a = 0

a = -2

x³-19x-30 = (x+2) (x²-2x-15) = (x+2) (x+3) (x-5)

User Scott Davis
by
4.7k points
5 votes

Answer:


(x + 2)\, (x + 3)\, (x - 5).

Explanation:

Apply polynomial long division to divide
p(x) by the know factor,
(x + 2).

Fill in the omitted terms:


\begin{aligned}p(x) &= x^(3)- 19\, x - 30 \\ &= x^(3) + 0\, x^(2) - 19\, x - 30\end{aligned}.

The leading term of the dividend is currently
x^(3). On the other hand, the leading term of the divisor,
(x + 2), is
x.

Hence, the next term of the quotient would be
x^(3) / x = x^(2).


\begin{aligned}p(x) &= \cdots \\ &= x^(3) + 0\, x^(2) - 19\, x - 30 \\ &= x^(3) + 0\, x^(2) - 19\, x - 30 \\ &\quad - x^(2) \, (x + 2) + [x^(2) \, (x + 2)] \\ &= x^(3) + 0\, x^(2) - 19\, x - 30 \\ &\quad -x^(3) - 2\, x^(2) + [x^(2)\, (x + 2)] \\ &= -2\, x^(2) - 19\, x - 30 \\ &\quad + [x^(2) \, (x + 2)]\end{aligned}.

The dividend is now
(-2\, x^(2) - 19\, x - 30), with
(-2\, x^(2)) being the new leading term. The leading term of the divisor
(x + 2) is still
x.

The next term of the quotient would be
(-2\, x^(2)) / x = -2\, x.


\begin{aligned}p(x) &= \cdots \\ &= -2\, x^(2) - 19\, x - 30 \\ &\quad + [x^(2) \, (x + 2)] \\ &=-2\, x^(2) - 19\, x - 30 \\ &\quad - (-2\,x ) \, (x + 2) + [(-2\, x) \, (x + 2)] + [x^(2) \, (x + 2)] \\ &= -2\, x^(2) - 19\, x - 30 \\ &\quad - (-2\, x^(2) - 4\, x) + [(x^(2) - 2\, x)\, (x + 2)] \\ &= -15\, x - 30 \\ &\quad + [(x^(2) - 2\, x)\, (x + 2)]\end{aligned}.

The dividend is now
(-15\, x - 30), with
(-15\, x) as the new leading term.

The next term of the quotient would be
(-15\, x) / x = -15.


\begin{aligned}p(x) &= \cdots \\ &= -15\, x - 30 \\ &\quad + [(x^(2) - 2\, x)\, (x + 2)] \\ &=-15\, x - 30 \\ &\quad -(-15)\, (x + 2) + [(-15)\, (x + 2)] + [(x^(2) - 2\, x)\, (x + 2)] \\ &= -15\, x - 30 \\ &\quad -(-15\, x - 30) + [(x^(2) - 2\, x - 15)\, (x + 2)] \\ &= (x^(2) - 2\, x - 15)\, (x + 2)\end{aligned}.

In other words:


\displaystyle \text{$(x^(3) - 19\, x - 30)/(x + 2) = x^(2) - 2\, x - 15$ given that $x+2 \\e 0$}.

The next step is to factorize the quadratic polynomial
(x^(2) - 2\, x - 15).

Apply the quadratic formula to find the two roots of
x^(2) - 2\, x - 15 = 0:


\begin{aligned} x_(1) &= \frac{-(-2) + \sqrt{2^(2) - 4* 1 * (-15)}}{2} \\ &= (2 + 8)/(2)= 5\end{aligned}.


\begin{aligned} x_(2) &= (2 - 8)/(2) = -3\end{aligned}.

By the factor theorem, the two factors of
(x^(2) - 2\, x - 15) would be
(x - 5) and
(x - (-3)). That is:


x^(2) - 2\, x -15 = (x + 3)\, (x - 5).

Therefore:


\begin{aligned}p(x) &= \cdots \\ &= (x^(2) - 2\, x - 15)\, (x + 2) \\ &= (x + 2)\, (x + 3)\, (x - 5)\end{aligned}.

User Ozturkib
by
4.3k points