84.3k views
5 votes
Plz solve this question​

Plz solve this question​-example-1
User Thrusty
by
8.7k points

1 Answer

2 votes


\huge \boxed{\mathbb{QUESTION} \downarrow}

  • Simplify ⇨ 1/x(x+a) + 1/x(x-a)


\large \boxed{\mathbb{ANSWER \: WITH \: EXPLANATION} \downarrow}


\sf\frac { 1 } { x ( x + a ) } + \frac { 1 } { x ( x - a ) } \\

To add or subtract expressions, expand them to make their denominators the same. Least common multiple of
x\left(x+a\right) and
x\left(x-a\right) is
x\left(x+a\right)\left(x-a\right). Multiply
(1)/(x\left(x+a\right)) times (x-a)/(x-a). Multiply
(1)/(x\left(x-a\right)) times (x+a)/(x+a).


\sf(x-a)/(x\left(x+a\right)\left(x-a\right))+(x+a)/(x\left(x+a\right)\left(x-a\right)) \\

Because
(x-a)/(x\left(x+a\right)\left(x-a\right)) and
(x+a)/(x\left(x+a\right)\left(x-a\right)) have the same denominator, add them by adding their numerators.


\sf(x-a+x+a)/(x\left(x+a\right)\left(x-a\right)) \\

Combine like terms in x-a+x+a.


\sf(2x)/(x\left(x+a\right)\left(x-a\right)) \\

Cancel out x in both the numerator and denominator.


\sf(2)/(\left(x+a\right)\left(x-a\right)) \\

Expand
\left(x+a\right)\left(x-a\right).


\boxed{\boxed{ \bf(2)/(x^(2)-a^(2))}} \\

User Marco Minerva
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories