43.4k views
4 votes

f(x) = x {}^(2) + 12x + 36

Determine the value of f^-1 (225) in this situation.
A. 21 days

B. 9 days

C. 6 days

D. 15 days​

1 Answer

3 votes

Answer:

B

Explanation:

We are given the function:


\displaystyle f(x) = x^2 + 12x + 36

And we want to determine the value of:


\displaystyle f^(-1)(225)

Let this value equal a. In other words:


\displaystyle f^(-1)(225) = a

Then by the definition of inverse functions:


\displaystyle \text{If } f^(-1)(225) = a\text{, then } f(a) = 225

Hence:


\displaystyle f(a) =225 = (a)^2 + 12(a) + 36

Solve for a:


\displaystyle \begin{aligned} 225 &= a^2 + 12a + 36 \\ \\ a^2 + 12a -189 &= 0 \\ \\ (a + 21)(a-9) &= 0\end{aligned}

By the Zero Product Property:


\displaystyle a + 21 = 0 \text{ or } a - 9 = 0

Hence:


\displaystyle a = -21 \text{ or } a = 9

Thus, f(9) = 225. Consequently, f⁻¹(225) = 9.

In conclusion, our answer is B.

User Dois
by
5.2k points