Answer:
a) 4
b) 10
c) 54
Explanation:
Given functions:
![\begin{cases}f(x)=2x\\g(x)=x^2+1\\h(x)=2(3)^x\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/high-school/94jl85o0tt7dkig4qnz5ddwi8znipaj4kw.png)
Part (a)
To find f(2), substitute x = 2 into function f(x) and solve:
![\begin{aligned} \implies f(2)&=2(2)\\&=4\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/redbpuxbfp6zlosed5jqysvdokyf9tvgzi.png)
Part (b)
To find g(-3), substitute x = -3 into function g(x) and solve:
![\begin{aligned} \implies g(-3)&=(-3)^2+1\\& = (-3 \cdot -3)+1 \\& = 9+1\\& = 10 \end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/nfktdbf73sw2srwftx6ibm4h0dfh27zkf7.png)
Part (c)
To find h(3), substitute x = 3 into function h(x) and solve:
![\begin{aligned} \implies h(3) & = 2(3)^3\\ & =2(3 \cdot 3 \cdot 3) \\& = 2(27)\\ & = 54\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/high-school/coyova19e9bc4q59bmsj7kjtmdrdlvmx4c.png)