65.8k views
14 votes
NO LINKS!!!

Use the fact that the trigonometric functions are periodic to find the exact value of each expression. Don't use a calculator. This is NOT MULTIPLE CHOICE!!

a. sin (405°)

b. cot (390°)

c. cos (33π/4)

d. sec (17π/4)

c. ​

User Mike Ottum
by
4.6k points

2 Answers

8 votes


\\ \rm\rightarrowtail sin(405)


\\ \rm\rightarrowtail sin(360+45)


\\ \rm\rightarrowtail sin45


\\ \rm\rightarrowtail (1)/(√(3))

#2


\\ \rm\rightarrowtail cot(390)


\\ \rm\rightarrowtail cot(360+30)


\\ \rm\rightarrowtail cot30


\\ \rm\rightarrowtail √(3)

#3


\\ \rm\rightarrowtail cos(33\pi/4)


\\ \rm\rightarrowtail cos(8\pi+\pi/4)


\\ \rm\rightarrowtail cos\pi/4


\\ \rm\rightarrowtail (1)/(√(2))

#4


\\ \rm\rightarrowtail sec(17\pi/4)


\\ \rm\rightarrowtail sec(4\pi +(\pi)/(4))


\\ \rm\rightarrowtail sec(\pi)/(4)


\\ \rm\rightarrowtail √(2)

User Dizy
by
4.6k points
6 votes

Answer:


\sin(405)=(√(2))/(2)


\cot(390)=√(3)


\cos\left((33)/(4)\pi\right)=(√(2))/(2)


\sec\left((17)/(4)\pi\right)=√(2)

Explanation:

Trig identities used:


\sin(A\pm B)=\sin A \cos B \pm \cos A \sin B


\cos(A \pm B)=\cosA \cos B \mp \sin A \sin B


\tan(A \pm B)=(\tan A \pm \tan B)/(1 \mp \tan A \tan B)


\cot A=(1)/(\tan A)


\sec A=(1)/(\cos A)

Standard trig angles


\sin(0 \pm 360n)=\sin(0 \pm 2 \pi n)=0\\\\\cos(0 \pm 360n)=\cos(0 \pm 2 \pi n)=1\\\\\tan(0 \pm 180n)=0\\\\\sin(45 \pm 360n)=\sin(\frac14 \pi \pm 2\pi n)=(√(2))/(2)\\\\\cos(45 \pm 360n)=\cos(\frac14 \pi \pm 2\pi n)=(√(2))/(2)\\\\\tan(30 \pm 180n)=(√(3))/(3)

Question a


\sin (405) = \sin (360 + 45)


= \sin(360)\cos(45) + \cos(360)\sin(45)


=0 \cdot (√(2))/(2)+1 \cdot (√(2))/(2)


=(√(2))/(2)

Question b


\cot(390)=(1)/(\tan(390))


=(1)/(\tan(360+30))\\\\


=(1-\tan(360) \tan(30))/(\tan(360)+\tan(30))


=(1-0 \cdot (√(3))/(3))/(0+(√(3))/(3))


=(1)/((√(3))/(3))


=√(3)

Question c


\cos\left((33)/(4)\pi\right)=\cos(8\pi+\frac14\pi)


=\cos(8\pi)\cos(\frac14\pi)}-\sin(8\pi)\sin(\frac14\pi)}


=1 \cdot (√(2))/(2)-0 \cdot (√(2))/(2)


=(√(2))/(2)

Question d


\sec\left((17)/(4)\pi\right)=(1)/(\cos(4\pi+\frac14\pi))


=(1)/(\cos(4\pi)\cos(\frac14\pi)-\sin(4\pi)\sin(\frac14\pi))}


=(1)/(1 \cdot (√(2))/(2) -0 \cdot (√(2))/(2))


=(1)/((√(2))/(2) )


=√(2)

User Wassim Taher
by
4.6k points