Answer:
I)
![\displaystyle A + B + C = 2x^2 + 4xy + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/33o770cbhe29riga6gvm1g1f1ne6b9o3u1.png)
II)
![\displaystyle A - B + C = 6x^2 -8xy](https://img.qammunity.org/2022/formulas/mathematics/high-school/j2273xemze1dvepm9qdn6wwo5on5x687ll.png)
III)
![\displaystyle A + B - C= -4x^2 + 10xy -12](https://img.qammunity.org/2022/formulas/mathematics/high-school/7e8u8vvbx762j3n2ennqxh6466dnakuzcq.png)
Explanation:
We are given the three equations:
![\displaystyle A = x^2 + xy -6,\, B = 6xy - 2x^2 +1 \text{ and } C = 3x^2 + 7 -3xy](https://img.qammunity.org/2022/formulas/mathematics/high-school/luhf2auz9g3acrgk2pnmujjeamam6515w6.png)
I)
We want to find:
![\displaystyle A + B + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/dicufeb2s6f1ppg3cfzfxma6j5fpimbjo7.png)
Substitute:
![\displaystyle = (x^2 + xy - 6) + (6xy -2x^2 + 1) + (3x^2 + 7 -3xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2tmrs3auzl7grlq9vjp63bc9g92ivboeya.png)
Rewrite:
![\displaystyle = (x^2 + 3x^2 - 2x^2) + (xy + 6xy - 3xy) + (-6 + 1 + 7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/s10x7235ncll868rl2l07j2vk480027mkq.png)
And combine like terms. Hence:
![\displaystyle A + B + C = 2x^2 + 4xy + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/33o770cbhe29riga6gvm1g1f1ne6b9o3u1.png)
II)
We want to find:
![\displaystyle A - B + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/9ft69enqpiew95ox34matklhqktm36n04t.png)
Likewise, substitute:
![\displaystyle = (x^2 + xy - 6) - (6xy - 2x^2 + 1) + (3x^2 + 7 - 3xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/an5di3cry33j6zefxcnwjzalubr75bq615.png)
Distribute:
![\displaystyle = (x^2 + xy - 6) + (-6xy +2x^2 - 1) + (3x^2 + 7 - 3xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n2080qdx9s7ea7e4ss21sfjywgm791ryto.png)
Rewrite:
![\displaystyle = (x^2 + 2x^2 +3x^2) + (xy - 6xy -3xy) + (-6 -1 + 7 )](https://img.qammunity.org/2022/formulas/mathematics/high-school/z1q2ns32rdlwjlbbcz3de7qpycpcbceohw.png)
And combine like terms. Hence:
![\displaystyle A - B + C = 6x^2 -8xy](https://img.qammunity.org/2022/formulas/mathematics/high-school/j2273xemze1dvepm9qdn6wwo5on5x687ll.png)
III)
We want to find:
![\displaystyle A + B - C](https://img.qammunity.org/2022/formulas/mathematics/high-school/wyuqcu3bsue9lvyaljeleeffoc8yj2kk78.png)
Substitute:
![\displaystyle = (x^2 + xy - 6) + (6xy - 2x^2 + 1) - (3x^2 + 7 - 3xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6satb1qkbhh42d6df17aa2r77p8n00qax7.png)
Distribute:
![\displaystyle = (x^2 + xy - 6) + (6xy - 2x^2 + 1) + (-3x^2 - 7 + 3xy)](https://img.qammunity.org/2022/formulas/mathematics/high-school/n04q1vi11zsq87kz3eez9z3qw2frvv50fg.png)
Rewrite:
![\displaystyle = (x^2 - 2x^2 - 3x^2) + (xy +6xy +3xy) + (-6 +1 - 7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kwyn9mufx6hzshwa07mqt7x8r2ar46rp4g.png)
And combine like terms. Hence:
![\displaystyle A + B - C= -4x^2 + 10xy -12](https://img.qammunity.org/2022/formulas/mathematics/high-school/7e8u8vvbx762j3n2ennqxh6466dnakuzcq.png)