82,134 views
21 votes
21 votes
Pls show work
Thank youuu <3

Pls show work Thank youuu <3-example-1
User Momin Shahzad
by
3.0k points

2 Answers

9 votes
9 votes

Answer:

x = 9

Explanation:

Pls show work Thank youuu <3-example-1
21 votes
21 votes

To Find the value of x and all angles :

We know that,

  • Sum of all angles of a triangle = 180°.

Therefore,


{ \longrightarrow \sf \qquad \angle1 + \angle2 + \angle3= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad (13x + 2) {}^( \circ) + (5x - 7){}^( \circ)+ (3x - 4) {}^( \circ) = 180 {}^( \circ) }

Adding like terms we get :


{ \longrightarrow \sf \qquad (13x +5x + 3x) + { \bigg[2 + ( - 7) + ( - 4) \bigg]}^( \circ)= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad 21x+ ( - 9) {}^( \circ)= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad 21x = 180 {}^( \circ) } \sf+ \: 9 {}^( \circ)


{ \longrightarrow \sf \qquad 21x = 189 {}^( \circ)}


{ \longrightarrow \sf \qquad x = \frac{189 {}^( \circ)}{21} }


{ \longrightarrow { \pmb{\bf \qquad x = 9 {}^( \circ)}}}

Therefore,


\longrightarrow \: \sf \qquad \angle1 = (13x + 2) {}^( \circ)


\longrightarrow \: \sf \qquad \angle1 = (13.9 + 2) {}^( \circ)


\longrightarrow \: \sf \qquad \angle1 = (117 + 2) {}^( \circ)


\longrightarrow \: \bf \qquad \angle1 = 119 {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (5x - 7) {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (5.9 - 7) {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (45 - 7) {}^( \circ)


\longrightarrow \: \bf \qquad \angle2 = 38 {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (3x - 4) {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (3.9 - 4) {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (27 - 4) {}^( \circ)


\longrightarrow \: \bf \qquad \angle3 = 23 {}^( \circ)

User MyLibary
by
3.4k points