234k views
1 vote
Solve for t. Express your answer in simplest and exact form.


z=q_(1)t+t(1)/(2)ht^(2)

1 Answer

6 votes

Answer:

t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t = -q_1/h - sqrt((2 z)/h + ((q_1)^2)/(h^2))

Explanation:

Solve for t:

z = (h t^2)/2 + t q_1

z = (h t^2)/2 + t q_1 is equivalent to (h t^2)/2 + t q_1 = z:

(h t^2)/2 + t q_1 = z

Divide both sides by h/2:

t^2 + (2 t q_1)/h = (2 z)/h

Add q_1^2/h^2 to both sides:

t^2 + (2 t q_1)/h + q_1^2/h^2 = (2 z)/h + q_1^2/h^2

Write the left hand side as a square:

(t + q_1/h)^2 = (2 z)/h + q_1^2/h^2

Take the square root of both sides:

t + q_1/h = sqrt((2 z)/h + q_1^2/h^2) or t + q_1/h = -sqrt((2 z)/h + q_1^2/h^2)

Subtract q_1/h from both sides:

t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t + q_1/h = -sqrt((2 z)/h + q_1^2/h^2)

Subtract q_1/h from both sides:

Answer: t = sqrt((2 z)/h + ((q_1)^2)/(h^2)) - q_1/h or t = -q_1/h - sqrt((2 z)/h + ((q_1)^2)/(h^2))

User Brian Fitzpatrick
by
3.1k points