123k views
12 votes
Pls show work
Thank youuu <3

Pls show work Thank youuu <3-example-1
User Meshaal
by
7.9k points

2 Answers

3 votes

Answer:

x = 9

Explanation:

Pls show work Thank youuu <3-example-1
User WebNeat
by
7.6k points
12 votes

To Find the value of x and all angles :

We know that,

  • Sum of all angles of a triangle = 180°.

Therefore,


{ \longrightarrow \sf \qquad \angle1 + \angle2 + \angle3= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad (13x + 2) {}^( \circ) + (5x - 7){}^( \circ)+ (3x - 4) {}^( \circ) = 180 {}^( \circ) }

Adding like terms we get :


{ \longrightarrow \sf \qquad (13x +5x + 3x) + { \bigg[2 + ( - 7) + ( - 4) \bigg]}^( \circ)= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad 21x+ ( - 9) {}^( \circ)= 180 {}^( \circ) }


{ \longrightarrow \sf \qquad 21x = 180 {}^( \circ) } \sf+ \: 9 {}^( \circ)


{ \longrightarrow \sf \qquad 21x = 189 {}^( \circ)}


{ \longrightarrow \sf \qquad x = \frac{189 {}^( \circ)}{21} }


{ \longrightarrow { \pmb{\bf \qquad x = 9 {}^( \circ)}}}

Therefore,


\longrightarrow \: \sf \qquad \angle1 = (13x + 2) {}^( \circ)


\longrightarrow \: \sf \qquad \angle1 = (13.9 + 2) {}^( \circ)


\longrightarrow \: \sf \qquad \angle1 = (117 + 2) {}^( \circ)


\longrightarrow \: \bf \qquad \angle1 = 119 {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (5x - 7) {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (5.9 - 7) {}^( \circ)


\longrightarrow \: \sf \qquad \angle2 = (45 - 7) {}^( \circ)


\longrightarrow \: \bf \qquad \angle2 = 38 {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (3x - 4) {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (3.9 - 4) {}^( \circ)


\longrightarrow \: \sf \qquad \angle3 = (27 - 4) {}^( \circ)


\longrightarrow \: \bf \qquad \angle3 = 23 {}^( \circ)

User Jtgameover
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories