456,834 views
9 votes
9 votes
Find the length of the third side. If necessary, round to the nearest tenth 22 25

Find the length of the third side. If necessary, round to the nearest tenth 22 25-example-1
User Mohammed Riyadh
by
2.9k points

2 Answers

12 votes
12 votes
  • This is Right Angled Triangle.

Solution :

  • We'll solve this using the Pythagorean Theorem.

Let,

  • Let BC be perpendicular.

  • 22 be AB, where AB is the Base.

  • 25 be AC, where AC is the Hypotenuse.

We know that,


{ \longrightarrow \bf \qquad \: (AB) {}^(2) +( BC) {}^(2) = (AC) {}^(2) }


{ \longrightarrow \sf \qquad \: (22) {}^(2) +( BC) {}^(2) = (25) {}^(2) }


{ \longrightarrow \sf \qquad \: (BC) {}^(2) = (25) {}^(2) - ( 22) {}^(2) }


{ \longrightarrow \sf \qquad \: BC = \sqrt{(25) {}^(2) - ( 22) {}^(2)} }


{ \longrightarrow \sf \qquad \: BC = √(625 - 484) }


{ \longrightarrow \sf \qquad \: BC = √(141) }


{ \longrightarrow \bf \qquad \: BC \approx11.87 }

Therefore,

  • The length of the third side is 11.9 (Nearest tenth of 11.87) .
Find the length of the third side. If necessary, round to the nearest tenth 22 25-example-1
User James Thomas
by
3.0k points
12 votes
12 votes

Explanation:

According to Pythagoras theorem ,

Hypotenuse² = Perpendicular ² + Base ²

Here , we have to find perpendicular

  • Hypotenuse = 25 unit
  • Base = 22 unit

So,

Hypotenuse² - Base² = Perpendicular²

putting the known values

25² - 22² = perpendicular²

141 = perpendicular²

√141 = perpendicular

Perpendicular = 11.9 unit

User Grayasm
by
2.6k points