96.3k views
12 votes
Find the length of the third side. If necessary, round to the nearest tenth 22 25

Find the length of the third side. If necessary, round to the nearest tenth 22 25-example-1

2 Answers

3 votes
  • This is Right Angled Triangle.

Solution :

  • We'll solve this using the Pythagorean Theorem.

Let,

  • Let BC be perpendicular.

  • 22 be AB, where AB is the Base.

  • 25 be AC, where AC is the Hypotenuse.

We know that,


{ \longrightarrow \bf \qquad \: (AB) {}^(2) +( BC) {}^(2) = (AC) {}^(2) }


{ \longrightarrow \sf \qquad \: (22) {}^(2) +( BC) {}^(2) = (25) {}^(2) }


{ \longrightarrow \sf \qquad \: (BC) {}^(2) = (25) {}^(2) - ( 22) {}^(2) }


{ \longrightarrow \sf \qquad \: BC = \sqrt{(25) {}^(2) - ( 22) {}^(2)} }


{ \longrightarrow \sf \qquad \: BC = √(625 - 484) }


{ \longrightarrow \sf \qquad \: BC = √(141) }


{ \longrightarrow \bf \qquad \: BC \approx11.87 }

Therefore,

  • The length of the third side is 11.9 (Nearest tenth of 11.87) .
Find the length of the third side. If necessary, round to the nearest tenth 22 25-example-1
User Alien Technology
by
3.7k points
8 votes

Explanation:

According to Pythagoras theorem ,

Hypotenuse² = Perpendicular ² + Base ²

Here , we have to find perpendicular

  • Hypotenuse = 25 unit
  • Base = 22 unit

So,

Hypotenuse² - Base² = Perpendicular²

putting the known values

25² - 22² = perpendicular²

141 = perpendicular²

√141 = perpendicular

Perpendicular = 11.9 unit

User Allex Radu
by
4.1k points