Answer:
![A=(3√(55))/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/32vv1z2w8bjdqq9m5gkzx0u4723w6t1j0s.png)
Explanation:
For a height h, a perimeter P, and an area A, use the following formula:
![A=(1)/(4)h\sqrt{P^(2)-4h^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/9rithgeb104lats33faxkyq4cjzm2xixje.png)
Next, replace the variables with the given values:
![A=(1)/(4)(3)\sqrt{(16)^(2)-4(3)^(2) }](https://img.qammunity.org/2022/formulas/mathematics/high-school/fafbzqa026fsxacjyvu8c46neb93ejwtxt.png)
Solve the inside of the square root:
![A=(1)/(4)(3)√(256-36)\\A=(1)/(4)(3)√(220)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mte0p8evslca6nphhbfm82l7hveg00y0h8.png)
Multiply outside of the square root:
![A=(3)/(4)√(220)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/jsth77kip27a3oxrwii0xcsny9g354wjtl.png)
Simplify the square root:
![A=((3)/(4))2√(55)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/l6lk3dp9u59v5r3uhey486g93oo7fs14bz.png)
Multiply outside of the square root once more:
![A=(3)/(2)√(55)\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/3jlaycfz51mjr1r0hpwf0kksp16wf4j00l.png)
Simplify:
, or ≈ 11.12429773