50.2k views
0 votes
suppose an object traveling in a straight line has a velocity function given by v(t)= t^2 -8t+ 15 km/hr. Find the displacement and distance traveled by the object from t=2 to t=4 hours.

User Big Russ
by
8.0k points

1 Answer

3 votes

v=t^2-8t+15

  • It has upper limit 4 and lower limit 2


\boxed{\sf {\displaystyle{\int}^b_a}x^ndx=\left[(x^(n+1))/(n+1)\right]^b_a}


\\ \sf\longmapsto s={\displaystyle{\int}}vdt


\\ \sf\longmapsto s={\displaystyle{\int^4_2}}t^2-8t+15


\\ \sf\longmapsto s=\left[(t^3)/(3)-8(t^2)/(2)+15t\right]^4_2


\\ \sf\longmapsto s=\left[(t^3)/(3)-4t^2+15t\right]^4_2


\\ \sf\longmapsto s=\left((4^3)/(3)-4(4)^2+15(4)\right)-\left((2^3)/(3)-4(2)^2+15(2)\right)


\\ \sf\longmapsto s=\left((64)/(3)-64+60\right)-\left((8)/(3)-16+30\right)


\\ \sf\longmapsto s=\left((64)/(3)-4\right)-\left((8)/(3)+14\right)


\\ \sf\longmapsto s=(64)/(3)-4-(8)/(3)-14


\\ \sf\longmapsto s=(64)/(3)-(8)/(3)-4-14


\\ \sf\longmapsto s=(46)/(3)-18


\\ \sf\longmapsto s=15.3-18

  • Take it +ve


\\ \sf\longmapsto s=|-2.7|


\\ \sf\longmapsto s=2.7km

User Joe Morris
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories