The sum S can also be expressed as
![S = \displaystyle \sum_(k=1)^n k\cdot5^(k-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/1vru5hfpxda1cwnvb08hryxxchulb1jp8i.png)
As a first step, pull out a factor of 5 from the sum:
![S = \displaystyle 5 \sum_(k=1)^n k\cdot 5^(k-2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/w751dy1vp7au5d0xhsotha7la2c4xwv1ta.png)
Shift the index to force the sum to start at k = 0, then distribute the summation:
![S = \displaystyle 5 \sum_(k=0)^(n-1) (k+1) 5^(k-1) \\\\ S = 5\sum_(k=0)^(n-1)k\cdot5^(k-1) + 5\sum_(k=0)^(n-1)5^(k-1) \\\\ S = 5\sum_(k=0)^(n-1)k\cdot5^(k-1) + \sum_(k=0)^(n-1)5^k](https://img.qammunity.org/2022/formulas/mathematics/high-school/vfj4eo3umpdsf5peeqzrw6b2hzeagmjs5f.png)
The second sum is geometric, with
![\displaystyle \sum_(k=0)^(n-1) 5^k = 1 + 5 + 5^2 + \cdots + 5^(n-1) \\\\ \implies 5\sum_(k=0)^(n-1) 5^k = 5 + 5^2 + 5^3 + \cdots + 5^n \\\\ \implies \sum_(k=0)^(n-1) 5^k - 5\sum_(k=0)^(n-1) 5^k = 1 - 5^n \\\\ \implies \sum_(k=0)^(n-1) 5^k = \frac{5^n-1}4](https://img.qammunity.org/2022/formulas/mathematics/high-school/84mwrhuhazwp2onwazjnbo5x669dxb78dr.png)
This leaves us with
![\displaystyle S = 5\sum_(k=0)^(n-1)k\cdot5^(k-1) + \frac{5^n-1}4](https://img.qammunity.org/2022/formulas/mathematics/high-school/oxmbo7t8qbk8w2sijwxot7f7iyoq4ifs2e.png)
For the remaining sum, add and subtract the k = n-th term, so that we have
![\displaystyle S = 5\left(\sum_(k=0)^n k\cdot 5^(k-1) - n\cdot5^(n-1)\right) + \frac{5^n-1}4](https://img.qammunity.org/2022/formulas/mathematics/high-school/n53u34xb3kccjquv7gd2kgiyb2pjesk9cd.png)
Then in the sum, we get 0 for the k = 0 term and end up recovering another copy of S :
![\displaystyle S = 5\left(S - n\cdot5^(n-1)\right) + \frac{5^n-1}4 \\\\ S = 5S - n\cdot5^n + \frac{5^n-1}4](https://img.qammunity.org/2022/formulas/mathematics/high-school/6j4nfwbmvk3yvvdzruzefn7cf3yaoke6ba.png)
Solving for S gives
![-4S = \frac{5^n-1}4 - n\cdot5^n \\\\ S = \frac{n\cdot5^n}4 - (5^n-1)/(16) \\\\ \boxed{S = ((4n-1)5^n-1)/(16)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/607zr01zldfg8z7w7xe4fvgcao6ww819jq.png)