Answer:
![\boxed {\boxed {\sf ( - (9)/(2), -1) \ or \ (-4.5, -1) }}](https://img.qammunity.org/2022/formulas/mathematics/college/exot4fbyhhar58spgpm3sjpoye4d4rxip6.png)
Explanation:
We are asked to find the midpoint of a line segment. When you find the midpoint, you essentially find the average of the x-coordinates and the y-coordinates. The midpoint formula is:
![(\frac {x_2+x_1)}{2}, (y_2+y_1)/(2))](https://img.qammunity.org/2022/formulas/mathematics/college/sjtd3wjjgn85sc6vo7qrps572kruxz5ieu.png)
In this formula, (x₁, y₁) and (x₂, y₂) are the endpoints of the line segment. we are given the endpoints R (-6, 1) and S (-3, -3). If we match the value and the corresponding variable we see that:
- x₁= -6
- y₁= 1
- x₂= -3
- y₂= -3
Substitute the values into the formula.
![( (-3 + -6)/(2) , ( 1+ -3)/(2) )](https://img.qammunity.org/2022/formulas/mathematics/college/f1zquk92ndm2el2dzirpamp7mie9136umg.png)
Solve the numerators.
![(\frac {-9}{2}, \frac {-2}{2})](https://img.qammunity.org/2022/formulas/mathematics/college/s79jqcx7gha46rogblolrhf719mos0ib8c.png)
Divide.
![( - \frac {9}{2}, -1})](https://img.qammunity.org/2022/formulas/mathematics/college/qqp7grufnek9gqp3pajxveqxx39ksuptrq.png)
The fraction can also be written as a decimal.
![(-4.5 , -1)](https://img.qammunity.org/2022/formulas/mathematics/college/kcsfsi3e4bj5895918prz7mrkwmvrovhbv.png)
The midpoint of the line segment RS is (-9/2, -1) or (-4.5, -1).