Answer:
c³ + 24c² + 192c + 512
Explanation:
(c + 8)³
= (c + 8)(c + 8)(c + 8) ← expand last 2 factors using FOIL
= (c + 8)(c² + 16c + 64)
Multiply each term in the second factor by each term in the first factor
c(c² + 16c + 64) + 8(c² + 16c + 64) ← distribute parenthesis
= c³ + 16c² + 64c + 8c² + 128c + 512 ← collect like terms
= c³ + 24c² + 192c + 512