Answer:
Explanation:
The region R is bounded below by y=1 and above by f(x) where

and we integrate the R over the interval [1,3]
A.
![V=\int_1^3 \pi(f(x)^2-1^2)\, dx\\V=\int_1^2 \pi(3^2-1^2)\, dx +\int_2^3 \pi((-x+5)^2-1^2)\, dx\\=9\pi + \int_2^3 \pi(x^2-10x+24)\, dx\\=9\pi +\pi\left({[(1/3)x^3-5x^2+24x]_2^3\right)\\=9\pi + \pi( (19/3) -25 +24)\\=9\pi +(16/3)\pi=43/3 \pi.](https://img.qammunity.org/2022/formulas/mathematics/college/mibr3ucol37b2dw34ht6fnof6fwqu5td16.png)
For part B

and you can compute the integral similarly as above, just split the integral into two integrals, one over [1,2] and the other is over [2,3].