127k views
5 votes
4. Find the derivative of sin x from first principle.



1 Answer

2 votes

Explanation:


\text{By First Principle,}


\begin{align}(d)/(dx)\sin x&=\lim_(h\to0)(\sin(x+h)-\sin x)/(h)\\&=\lim_(h\to0)(\sin x\cos h+\sin h\cos x-\sin x)/(h)\\&=\lim_(h\to0)\left((\cos h-1)/(h)\cdot\sin x\right)+\lim_(h\to0)\left((\sin h)/(h)\cdot\cos x\right)\\&=\sin x\cdot\left(\lim_(h\to0)(\cos h-1)/(h)\right)+\cos x\cdot\lim_(h\to0)\left((\sin h)/(h)\right)\\&=\sin x\cdot 0+\cos x\cdot1\\&=\cos x\end{align}


\color{blue}\text{Note: This proof is in fact circular without the geometric proof of the value of the two limits, but for the sake of this question it is done in this way.}

User UML GURU
by
6.6k points