159k views
0 votes
Integral of 1/(x^2-x+1) ​

User Rphonika
by
3.7k points

1 Answer

2 votes


\boxed{\sf \displaystyle{\int}x^ndx=(x^(n+1))/(n+1)}


\\ \sf\longmapsto \displaystyle{\int}(1)/(x^2-x+1)


\\ \sf\longmapsto \displaystyle{\int}x^(-2)-x^(-1)+1


\\ \sf\longmapsto \displaystyle{\int}x^(-2)-\displaystyle{\int}x^(-1)+\displaystyle{\int}1


\\ \sf\longmapsto (x^(-2+1))/(-2+1)-(x^(-1+1))/(-1+1)+1


\\ \sf\longmapsto (x^(-1))/(-1)-(x^0)/(0)+1


\\ \sf\longmapsto -(1)/(x)-(1)/(0)+1


\\ \sf\longmapsto -(1)/(x)-\infty+1


\\ \sf\longmapsto \infty

User Vinit Dhatrak
by
4.6k points