225k views
5 votes
The hypotenuse of a right triangle is 10 meters and its

legs measure x and x + 2. How long are the legs?

1 Answer

4 votes

Solution :

Let's solve by using Pythagoras theorem,


\hookrightarrow \: (10) {}^(2) = {(x})^(2) + (x + 2) {}^(2)


\hookrightarrow \: 100 = {x}^(2) + {x}^(2) + 4x + 4


\hookrightarrow \: 100 - 4 = 2 {x}^(2) + 4x


\hookrightarrow \: 96 = 2 {x}^(2) + 4x


\hookrightarrow \: 2 {x}^(2) + 4x - 96 = 0


\hookrightarrow \: 2( {x}^(2) + 2x - 48) = 0


\hookrightarrow \: {x}^(2) + 2x - 48 = 0


\hookrightarrow \: {x}^(2) + 8x - 6x - 48 = 0


\hookrightarrow \: x(x + 8) - 6(x + 8) = 0


\hookrightarrow \: (x + 8)(x - 6) = 0

now there are two cases

Case 1 : when (x + 8) = 0


\hookrightarrow \: x + 8 = 0


\hookrightarrow \: x = - 8

but the value of x can't be negative, since side of a triangle isn't a negative value .

Case 2 : when (x - 6) = 0


\hookrightarrow \: x - 6 = 0


\hookrightarrow \: x = 6

therefore the measure of other two sides are :


\hookrightarrow \: x = 6 \: units


\hookrightarrow \: x + 2 = 6 + 2 = 8 \: units


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \mathrm{TeeNForeveR }

User Matthewb
by
3.4k points