Recall the following identities:
cos(4x) = cos⁴(x) - 6 cos²(x) sin²(x) + sin⁴(x)
cos(3x) = cos³(x) - 3 cos²(x) sin(x)
sin²(x) = 1 - cos²(x)
Then the equation
cos(4x) = cos²(3x) + sin²(x)
can be rewritten entirely in terms of cos(x) as
8 cos⁴(x) - 8 cos²(x) + 1 = 16 cos⁶(x) - 24 cos⁴(x) + 8 cos²(x) + 1
16 cos⁶(x) - 32 cos⁴(x) + 16 cos²(x) = 0
16 cos²(x) (cos²(x) - 1)² = 0
Now we can solve:
cos²(x) = 0 or (cos²(x) - 1)² = 0
cos(x) = 0 or cos²(x) - 1 = 0
cos(x) = 0 or cos²(x) = 1
cos(x) = 0 or cos(x) = -1 or cos(x) = 1
x = π/2 + 2nπ or x = -π/2 + 2nπ
… or x = π + 2nπ
… or x = 2nπ
where n is any integer.