Answer:
Cubic polynomial has zeros at x=−1x=−1 and 22, is tangent to x−x−axis at x=−1x=−1, and passes through the point (0,−6)(0,−6).
So cubic polynomial has double zero at x=−1x=−1, and single zero at x=2x=2
f(x)=a(x+1)2(x−2)f(x)=a(x+1)2(x−2)
f(0)=−6f(0)=−6
a(1)(−2)=−6a(1)(−2)=−6
a=3a=3
f(x)=3(x+1)2(x−2)f(x)=3(x+1)2(x−2)
f(x)=3x3−9x−6