206k views
5 votes
What is the answer to -|3x-9|+2=-4

2 Answers

3 votes

Answer: x= 1, 5

Explanation:

First, isolate the absolute value. Subtract two from the equation to get -l3x-9l=-6, and then divide by -1 to get l3x-9l=6.

Since an absolute value measures how far away a value is from zero, it's always positive. For example, -10 and 10 have the same absolute value, 10, because they're both 10 units away from zero.

Because of this, you create two equations; 3x-9=6, and 3x-9=-6.

For the first equation, add 9 to 6 and divide that by 3 to get x=5.

For the second equation, add 9 to -6 and divide that by 5 to get x=1.

User Pouya Khalilzad
by
3.1k points
7 votes

entered :

-|3x-9|+2=-4

Step by step solution :

STEP

1

:

Rearrange this Absolute Value Equation

Absolute value equalitiy entered

-|3x-9|+2 = -4

Another term is moved / added to the right hand side.

To make the absolute value term positive, both sides are multiplied by (-1).

|3x-9| = 6

STEP

2

:

Clear the Absolute Value Bars

Clear the absolute-value bars by splitting the equation into its two cases, one for the Positive case and the other for the Negative case.

The Absolute Value term is |3x-9|

For the Negative case we'll use -(3x-9)

For the Positive case we'll use (3x-9)

STEP

3

:

Solve the Negative Case

-(3x-9) = 6

Multiply

-3x+9 = 6

Rearrange and Add up

-3x = -3

Divide both sides by 3

-x = -1

Multiply both sides by (-1)

x = 1

Which is the solution for the Negative Case

STEP

4

:

Solve the Positive Case

(3x-9) = 6

Rearrange and Add up

3x = 15

Divide both sides by 3

x = 5

Which is the solution for the Positive Case

STEP

5

:

Wrap up the solution

x=1

x=5

I hope this help you

User WoMo
by
3.3k points