Problem 3
Answer: 3/2
=====================================================
Step-by-step explanation:
Use the pythagorean theorem to find the length of the missing side.
![a^2 + b^2 = c^2\\\\a^2 + (3√(5))^2 = 9^2\\\\a^2+3^2*(√(5))^2 = 9^2\\\\a^2 + 9(5) = 81\\\\a^2 + 45 = 81\\\\a^2 = 81-45\\\\a^2 = 36\\\\a = √(36)\\\\a = 6\\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/pvuy9rsl0igyfs40fouholm7f10o6clqer.png)
This is the length of the missing vertical side. This side is opposite the angle theta.
![\csc = \text{cosecant}\\\\\csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}}\\\\\csc(\theta) = (9)/(6)\\\\\csc(\theta) = (3*3)/(3*2)\\\\\csc(\theta) = (3)/(2)\\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/l7uu7dktru377kqn6qneo9fuzijsskkt12.png)
Alternatively, you can compute it like this
![\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}\\\\\sin(\theta) = (6)/(9)\\\\\sin(\theta) = (2)/(3)\\\\\csc(\theta) = (1)/(\sin(\theta))\\\\\csc(\theta) = 1 / \sin(\theta)\\\\\csc(\theta) = 1 / (2)/(3)\\\\\csc(\theta) = (3)/(2)\\\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/12fzvwvcn7blgq1wdhrsfz78mxoaq8bnrp.png)