150k views
3 votes
X =sqrt(x+18)+2

explain please

2 Answers

11 votes

Let's find x


\\ \rm\rightarrowtail x=√(x+18)+2


\\ \rm\rightarrowtail x-2=√(x+18)


\\ \rm\rightarrowtail x^2-4x+4={x+18}


\\ \rm\rightarrowtail x^2-5x-14=0


\\ \rm\rightarrowtail x^2+2x-7x-14=0


\\ \rm\rightarrowtail (x+2)(x-7)=0

  • x=-2,7
User Marcelino
by
4.8k points
7 votes

Answer:


x=7

Explanation:


x =√((x+18))+2

subtract 2 from both sides:


x -2=√((x+18))

square both sides:


(x -2)^2=x+18

expand brackets:


x^2-4x+4=x+18

subtract x from both sides:


x^2-5x+4=18

subtract 18 from both sides:


x^2-5x-14=0

factor:


x^2+2x-7x-14=0


x(x+2)-7(x+2)=0


(x+2)(x-7)=0

solve for x:


x+2=0\implies x=-2


x-7=0\implies x=7

Now we have found the values of x, input them into the original equation to verify:

when
x = -2:


√((-2 +18))+2=6\\\\ 6\\eq 2\implies \textsf {incorrect}

when
x = 7:


√((7+18))+2=7\\\\ 7=7\implies \textsf {correct}

Therefore, the only correct solution is
x=7

User Timusan
by
4.0k points