129k views
2 votes
If a^2+b^2=13 and ab =6 find the value of
(i)(2a+2b)
(ii)(2a-2b)

1 Answer

2 votes

Answer:

I)


2a + 2b = -10\text{ or } 2a + 2b = 10

II)


2a - 2b = -2 \text{ or } 2a-2b= 2

Explanation:

We are given that:


\displaytstyle a^2 + b^2 = 13 \text{ and } ab= 6

I)

Recall the perfect square trinomial pattern:


\displaystyle (a+b)^2 = a^2 + 2ab + b^2

Rewrite:


\displaystyle (a+b)^2 = (a^2 + b^2) + (2ab)

Substitute:


\displaystyle (a+b)^2 = (13) + (12)

Evaluate:


\displaystyle (a + b)^2 = 25

Take the square root of both sides:


\displaystyle a + b = \pm√(25) = \pm5

Hence:


\displaystyle 2a + 2b = \pm 10

Therefore:


\displaystyle 2a + 2b = -10 \text{ or } 2a + 2b = 10

II)

Likewise:


\displaystyle (a-b)^2 = a^2 - 2ab + b^2

Substitute:


\displaystyle (a-b)^2 = (13) -(12)

Solve:


\displaystyle \begin{aligned} (a-b)^2 &= 1 \\ a-b &= \pm √(1) \\ a-b &= \pm 1\\ 2a - 2b &= \pm 2\end{aligned}

In conclusion:


2a - 2b = -2 \text{ or } 2a-2b= 2

User Alex Kucherenko
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories