Given the PMF
![P(X=x) = \begin{cases} 0.3 & \text{if } x \in \{-1, 2\} \\ 0.1 & \text{if } x \in \{0, 7\} \\ 0.2 & \text{if } x = 6 \\ 0 & \text{otherwise} \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/4slk6vv65tutix815pbzlc9p0h0jjfq5ss.png)
(a)
![P(-1 < X \le 2) = P(X = 0) + P(X = 2) = 0.1 + 0.3 = \boxed{0.4}](https://img.qammunity.org/2022/formulas/mathematics/college/seb6lp59g8lmzi4bgr79qo1khs3uk29286.png)
(b) The CDF is defined as
, so that
![F_X(x) = \begin{cases} 0 & \text{if } x < -1 \\ 0.3 & \text{if } -1 \le x < 0 \\ 0.4 & \text{if } 0 \le x < 2 \\ 0.7 & \text{if } 2 \le x < 6 \\ 0.9 & \text{if } 6 \le x < 7 \\ 1 & \text{if } x \ge 7 \end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/uhi1r9hylhw0aok3hjaxt7dnmh9uzxvjsa.png)
It follows that
![F(3.2) = \boxed{0.7}](https://img.qammunity.org/2022/formulas/mathematics/college/jitaabnxh343afmlctj4rx54xt8z52ik04.png)
(c) Expectation is defined as
![E[X] = \displaystyle \sum_x x\,P(X=x)](https://img.qammunity.org/2022/formulas/mathematics/college/xd8sko6tzgq3jz35aqbvmmnvb4210ay8rb.png)
We have
![E[X] = \displaystyle \sum_{x\in\{-1,0,2,6,7\}} x\,P(X=x) \\\\ E[X] = -P(X=-1) + 2P(X=2)+6P(X=6)+7P(X=7) \\\\ E[X] = -0.3 + 0.6 + 1.2 + 0.7 = \boxed{2.2}](https://img.qammunity.org/2022/formulas/mathematics/college/kxsn2w7sx8pz7isjoqj3pcglr2aib8mqx5.png)
(d) First compute the second moment of X, which is defined as
![E[X^2] = \displaystyle \sum_x x^2\,P(X=x)](https://img.qammunity.org/2022/formulas/mathematics/college/7d455bn8nwumitoduz02z83vsehhl2ubax.png)
We get
![E[X^2] = (-1)^2P(X=-1) + 2^2P(X=2) + 6^2P(X=6) + 7^2P(X=7) \\\\ E[X^2] = 0.3 + 1.2 + 7.2 + 4.9 = 13.6](https://img.qammunity.org/2022/formulas/mathematics/college/8smn8rv9m2rn0gzif8hvei48wblj50z18k.png)
Variance is defined as
![\mathrm{Var}[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2](https://img.qammunity.org/2022/formulas/mathematics/college/nolovgf0h1hawd6kv1s5h6gyacoeswoohp.png)
so it follows that
![\mathrm{Var}[X] = 13.6 - 2.2^2 = \boxed{8.76}](https://img.qammunity.org/2022/formulas/mathematics/college/f186lshnmw4va0b8x49oen2eisne7ro01y.png)
(e) Not sure what this part has to do with the rest of the question. At any rate, if Y is a random variable following a Poisson distribution with λ = 3, then Y has a PDF of
![P(Y=y) = \begin{cases}(e^(-3)*3^y)/(y!)&\text{if }y\in\{0,1,2,\ldots\}\\\\0&\text{otherwise}\end{cases}](https://img.qammunity.org/2022/formulas/mathematics/college/g1t3b72zkwkw9i82n9fh2fvb5x7v100z7s.png)
Then
![P(Y > 5) = 1 - P(Y \le 5) = 1 - P(Y=0) - P(Y=1) - \cdots - P(Y=5) \\\\ P(Y>5) = (5e^3-92)/(5e^3) \approx \boxed{0.0839}](https://img.qammunity.org/2022/formulas/mathematics/college/6fa18ztvnja8lq4bkn023h9h1klzpqy08a.png)