9514 1404 393
Answer:
{∛2e^(iπ), ∛2·e^(iπ/3), ∛2·e^(-iπ/3)}
Explanation:
![\displaystyle \sqrt[3]{z}=(2e^(i\pi))^{(1)/(3)}=(2e^(i(2n+1)\pi))^{(1)/(3)}=\sqrt[3]{2}\cdot e^(i(2n+1)\pi/3)\quad\text{for $n=\{-1,0,1\}$}\\\\=\{\sqrt[3]{2}\cdot e^(-i\pi/3),\sqrt[3]{2}\cdot e^(i\pi/3),\sqrt[3]{2}\cdot e^(i\pi)\}](https://img.qammunity.org/2022/formulas/mathematics/college/hkp453r7piny7l0o5gilete9b7rg0tj756.png)
__
Additional comment
z = -2. ∛z will be three points in the complex plane on a circle of radius ∛2 at angles ±π/3 and π radians (±60° and 180°). That is, the real cube root of -2 is -∛2.