229k views
4 votes
Prove this

1-tan^2x/1+tan^2x=cos^2x-sin^2x

User Roshambo
by
4.9k points

1 Answer

6 votes

Answer:

see explanation

Explanation:

Using the identity

tan x =
(sinx)/(cosx)

Consider the left side


(1-tan^2x)/(1+tan^2x)

=
(1-(sin^2x)/(cos^2x) )/(1+(sin^2x)/(cos^2x) ) ( multiply numerator and denominator by cos²x to clear fractions

=
(cos^2x-sin^2x)/(cos^2x+sin^2x) ← ( cos²x + sin²x = 1 ]

= cos²x - sin²x

= right side , thus proven

User Purusartha
by
4.2k points