Answer:
C
Explanation:
We want to solve the inequality:
![\displaystyle 5.1(3 + 2.2x) > -14.25 - 6(1.7x+4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zn8qxbe5m9z9r35efcx2s1vvorkgh91sg5.png)
Distribute:
![(15.3+11.22x) > -14.25 + (-10.2x-24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qilef1jzmfrt8eqjd88d00sbfndf8fugcq.png)
Combine like terms:
![15.3 + 11.22x > -10.2x-38.25](https://img.qammunity.org/2022/formulas/mathematics/high-school/m79ak154c7vem164dj2bz0nwft5qjzz8tz.png)
We can add 10.2x to both sides:
![15.3 + 21.42x > -38.25](https://img.qammunity.org/2022/formulas/mathematics/high-school/yvket1mw5fbuuqrxygq32wf22w81eowxe8.png)
Subtract 15.3 from both sides:
![21.42x > -53.55](https://img.qammunity.org/2022/formulas/mathematics/high-school/8je9fx2hh1v24r9oholmpt9awq5mxqrd7d.png)
And divide both sides by 21.42. Hence:
![\displaystyle x > -2.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/r89enq4ifn5vmkjhleb72b3chezxrxw93n.png)
This means all values greater than -2.5. Hence, in interval notation:
![(-2.5, \infty)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3mzck8d3tuca3alxwbrhl1h9doo6syrms6.png)
In conclusion, our answer is C.