176k views
2 votes
a number set consists of {4,5,6,7}。How many 2-digit combinations of numbers from the data set can be divided by 3?

User Liane
by
7.7k points

1 Answer

5 votes

Answer:

5

Explanation:

This trick works with 3:

If the sum of the digits of a number is divisble by 3 then the number is divisble by 3.

44 is not divisble by 3 because 4+4=8 is not divisble by 3.

45 is divisble by 3 because 4+5=9 is divisble by 3.

46 is not divisble by 3 because 4+6=10 is not divisble by 3.

47 is not divisble by 3 because 4+7=11 is not divisble by 3.

54 is divisble by 3 because 5+4=9 is divisble by 3.

55 is not divisble by 3 because 5+5=10 is not divisble by 3.

56 is not divisble by 3 because 5+6=11 is not divisble by 3.

57 is divisble by 3 because 5+7=12 is divisble by 3.

64, 65,67 are not divisble by 3 because their digits' sums are 10,11, and 13 respectively. 66 is a winner because 6+6=12 is divisble by 3.

Finally 7...

74,76,77 are not divisble by 3 because their digits' sums are 11,13, and 14 respectively. 75 is divisble by 3 because 7+5=12 is divisble by 3.

The victors are

45

54

57

66

75

User Detilium
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.