Answer:
![\displaystyle \text{min} = \frac{\sqrt{3+2√(3)}}{2} - \frac{2\sqrt[4]{3}}{√(2)} \text{ at } x = (√(3))/(2)\text{ and } \\ \\ \text{max} = 2√(5) -4 \text{ at } x = 4](https://img.qammunity.org/2022/formulas/mathematics/college/ly8rhara2wwf95rzku1lv7gsd97lc7aguh.png)
Explanation:
We want to find the maximum and minimum values of the function:

On the interval [0, 4].
First, evaluate its endpoints:

Recall that the extrema of a function occurs at its critical points; that is, where its derivative equals zero (or is undefined).
Take the derivative of both sides:
![\displaystyle f'(x) = (d)/(dx)\left[ √(x + x^2) - 2√(x)\right]](https://img.qammunity.org/2022/formulas/mathematics/college/dy0hy1hayvq29xwsq31tmfvuudackvzamr.png)
Differentiate:

Note that the derivative is undefined at x = 0. Hence, x = 0 is a critical point.
Solve for the zeros of the derivative:

Therefore, our only two critical points are at x = 0 and x = √3/2:
Evaluate the function at x = √3/2:
![\displaystyle \begin{aligned} f\left((√(3))/(2)\right) &= \sqrt{\left((√(3))/(2) \right)+ \left((√(3))/(2)\right)^2} - 2 \sqrt{\left((√(3))/(2)\right)} \\ \\ &= \frac{\sqrt{3+2√(3)}}{2}- \frac{2\sqrt[4]{3}}{√(2)} \\ \\ &\approx -0.5900\end{aligned}](https://img.qammunity.org/2022/formulas/mathematics/college/17to8bhs4rtuylyk9zw9mb8nrslkvbpz1o.png)
In conclusion: the exact maximum and minimum values of f on the interval [0, 4] is:
![\displaystyle \text{min} = \frac{\sqrt{3+2√(3)}}{2} - \frac{2\sqrt[4]{3}}{√(2)} \text{ at } x = (√(3))/(2)\text{ and } \\ \\ \text{max} = 2√(5) -4 \text{ at } x = 4](https://img.qammunity.org/2022/formulas/mathematics/college/ly8rhara2wwf95rzku1lv7gsd97lc7aguh.png)