79.1k views
0 votes
If f(x) = x (ln x), find f'(x).

A. e^(x + 1)
B. 1 + ln x
C. 1 + e^x
D. (ln x)^2 + x

User Kassie
by
4.8k points

2 Answers

5 votes

Answer:


f'(x)=1+\ln x

Explanation:


f'(x) is notation for the first derivative of
f(x).

Recall the product rule:


(f\cdot g)'=f'\cdot g+g'\cdot f

Therefore, we have:


\displaystyle (d)/(dx)(x\ln x)=(d)/(dx)(x)\cdot \ln(x)+(d)/(dx)(\ln x)\cdot x

Note that:


\displaystyle (d)/(dx)(x)=1,\\\\(d)/(dx)(\ln x)=(1)/(x)

Simplify:


\displaystyle (d)/(dx)(x\ln x)=1\cdot \ln x+(1)/(x)\cdot x, \\\\(d)/(dx)(x\ln x)= \ln x+1=\boxed{1+\ln x}

User Twentyonehundred
by
4.3k points
2 votes

The derivative is:


\bold{f(x) \: = \: x \: * \: (In(x))}


\bold{f'(x) \: = \: (d)/(dx) (x \: * \: In(x))}


\bold{f'(x) \: = \: (d)/(dx) (x) \: * \: In(x) \: + \: x \: * \: (d)/(dx) (In(x))}


\bold{f'(x) \: = \: 1In(x) \: + \: x \: * (1)/(x) }


\bold{f'(x) \: = \: In(x) \: + \: x \: * \: (1)/(x) }


\boxed{ \bold{f'(x) \: = \: In(x) \: + \: 1}}

MissSpanish

User Naumov
by
4.5k points