79.1k views
0 votes
If f(x) = x (ln x), find f'(x).

A. e^(x + 1)
B. 1 + ln x
C. 1 + e^x
D. (ln x)^2 + x

User Kassie
by
8.4k points

2 Answers

5 votes

Answer:


f'(x)=1+\ln x

Explanation:


f'(x) is notation for the first derivative of
f(x).

Recall the product rule:


(f\cdot g)'=f'\cdot g+g'\cdot f

Therefore, we have:


\displaystyle (d)/(dx)(x\ln x)=(d)/(dx)(x)\cdot \ln(x)+(d)/(dx)(\ln x)\cdot x

Note that:


\displaystyle (d)/(dx)(x)=1,\\\\(d)/(dx)(\ln x)=(1)/(x)

Simplify:


\displaystyle (d)/(dx)(x\ln x)=1\cdot \ln x+(1)/(x)\cdot x, \\\\(d)/(dx)(x\ln x)= \ln x+1=\boxed{1+\ln x}

User Twentyonehundred
by
8.1k points
2 votes

The derivative is:


\bold{f(x) \: = \: x \: * \: (In(x))}


\bold{f'(x) \: = \: (d)/(dx) (x \: * \: In(x))}


\bold{f'(x) \: = \: (d)/(dx) (x) \: * \: In(x) \: + \: x \: * \: (d)/(dx) (In(x))}


\bold{f'(x) \: = \: 1In(x) \: + \: x \: * (1)/(x) }


\bold{f'(x) \: = \: In(x) \: + \: x \: * \: (1)/(x) }


\boxed{ \bold{f'(x) \: = \: In(x) \: + \: 1}}

MissSpanish

User Naumov
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories