Answer:
![\displaystyle (3x+4)/((x-5)(x-1)) = (19)/(4(x-5)) +(-7)/(4(x-1))](https://img.qammunity.org/2022/formulas/mathematics/high-school/cuir6s8mufdxvhg3x11160aifarjjt2va8.png)
Explanation:
We are given the rational expression:
![\displaystyle (3x+4)/(x^2 -6x +5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/mlfxhailitlo0fmciv38jhnia5skk8p6co.png)
And we want to find two rational expressions that sum to the above expression.
This technique is known as partial fraction decomposition. First, factor the denominator into linear factors:
![\displaystyle = (3x+4)/((x-5)(x-1))](https://img.qammunity.org/2022/formulas/mathematics/high-school/m6c062po57h6a681oou1k3b8bmj9i1ms6n.png)
Let A and B be two unknown constants. We can let:
![\displaystyle (3x+4)/((x-5)(x-1)) = (A)/(x-5) + (B)/(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vz2skq7la0elciv4d5rmm54k5e9ahuvgzm.png)
Find A and B. Multiply the entire equation by the denominator:
![\displaystyle \displaystyle (3x+4)/((x-5)(x-1))\left((x-5)(x-1)\right) = \left((A)/(x-5) + (B)/(x-1)\right)\left( (x-5)(x-1)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/hldvfy94238jyq8oxhdrydnh2qwu2o973z.png)
Simplify:
![3x + 4 = A(x-1) + B(x-5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ridq2cz51dmx2dvs0klirkp0ys0a3kf31o.png)
To find A and B, let x equal some value such that it will cancel out one variable. First, let x = 1. Then:
![\displaystyle 3(1) + 4 = A((1) - 1) + B((1) -5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eur1kk5dxufqlajlmve3q1puj9mecqtwtp.png)
Simplify:
![\displaystyle 7 = A(0) + B(-4) \Rightarrow -4B = 7](https://img.qammunity.org/2022/formulas/mathematics/high-school/meudsxbqo59gzhjtqp8c77agu0skheu4a8.png)
Hence:
![\displaystyle B = -(7)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/grdjootp1gufq67kurh4ctfgtuqwkdheq3.png)
To find A, let x = 5 (we choose this value because it allows us to cancel B):
![\displaystyle 3(5) + 4 = A((5)-1) + B((5) - 5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7s9spgd7v8h6g222pzu5t6nkwpx8c0mymb.png)
Simplify:
![\displaystyle 19 = A(4) + B(0) \Rightarrow A = (19)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/l5x0u8e7ykivr5y0e59doespsu8hn71uun.png)
We had:
![\displaystyle (3x+4)/((x-5)(x-1)) = (A)/(x-5) + (B)/(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vz2skq7la0elciv4d5rmm54k5e9ahuvgzm.png)
Substitute:
![\displaystyle (3x+4)/((x-5)(x-1)) = ((19)/(4))/(x-5) +(-(7)/(4))/(x-1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/w2p17n067h45w5wfemgwzjq5uvaay3xkci.png)
In conclusion:
![\displaystyle (3x+4)/((x-5)(x-1)) = (19)/(4(x-5)) +(-7)/(4(x-1))](https://img.qammunity.org/2022/formulas/mathematics/high-school/cuir6s8mufdxvhg3x11160aifarjjt2va8.png)