232k views
4 votes
5x²+4x+3=0 solve for x​

User QualiT
by
5.2k points

1 Answer

4 votes

Answer:


{ \underline{ \sf{x \: is \: \: \{ ( - 5 + i √(35) )/(10) \} } \: \: and \: \: \{ ( - 5 - i √(35) )/(10) \}} }

Explanation:


5 {x}^(2) + 4x + 3 = 0

from quadratic formular:


{ \sf{x = \frac{ - b± \sqrt{ {b}^(2) - 4ac } }{2a} }}

general equation:


{ax}^(2) + bx + c = 0

a is 5, b is 4 and c is 3:

substitute in formular:


{ \sf{x = \frac{ - 5± \sqrt{ {5}^(2) - (4 * 5 * 3) } }{(2 * 5)} }} \\ \\ { \sf{x = ( - 5± √( - 35) )/(10) }}

but from complexes, i² = -1


{ \sf{x = \frac{ - 5± \sqrt{35 {i}^(2) } }{10} }} \\ \\ = { \sf{x = ( - 5±i √(35) )/(10) }}

User Bbkglb
by
5.8k points