Answer:
48
Explanation:
We are given the exponential function:—
![\displaystyle \large{f(x)=2^x+49}](https://img.qammunity.org/2023/formulas/mathematics/high-school/s8fdl53f12i26qpmfv811mrz24bohlbgcr.png)
Finding average rate of change from x = 4 to x = 7:—
The formula to find average rate of change:—
or
![\displaystyle \large{(f(x+h)-f(x))/(h)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1oh07f5we8ip252e7t4m3wml053ec89pot.png)
Let a be 7 and b be 4, therefore:—
![\displaystyle \large{(f(7)-f(4))/(7-4) = ((2^7+49)-(2^4+49))/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lk0snyngs9qxbfhxa6aq6nb1n7znhqn4im.png)
Evaluate:—
![\displaystyle \large{((128+49)-(16+49))/(3)}\\\displaystyle \large{(128+49-16-49)/(3)}\\\displaystyle \large{(128+16)/(3)}\\\displaystyle \large{(144)/(3)}\\\displaystyle \large{48}](https://img.qammunity.org/2023/formulas/mathematics/high-school/zsf1p2iqalkakta2rdtm8fu0gxsn6z6ikc.png)
Therefore, the average of change from x = 4 to x = 7 is 48.