If you mean
![\displaystyle \lim_(x\to0^+) \frac{(1+\sin(7x))^8}x](https://img.qammunity.org/2022/formulas/mathematics/college/uk3mgq0ahnuu7199gjahx3nw4pwtywrhyz.png)
then the limit doesn't exist, since 1 + sin(7x) approaches 1 while the denominator approaches 0.
However, if instead you mean
![\displaystyle \lim_(x\to0^+)(1+\sin(7x))^(8/x)](https://img.qammunity.org/2022/formulas/mathematics/college/v0iwmhw0yrtqp0ki7ej7cy4k9s99p87ezs.png)
rewrite the limand as
![(1+\sin(7x))^(8/x) = \exp\left(\ln(1+\sin(7x))^(8/x)\right) \\\\ = \exp\left(\frac{8\ln(1+\sin(7x))}x\right) \\\\ =\exp\left(\frac{\ln(1+\sin(7x))}x\right)^8](https://img.qammunity.org/2022/formulas/mathematics/college/h1xxgug22zue64tpi3ka4k6d6xxgyk1n66.png)
The exponential function is continuous at 0, so we can pass the limit through it:
![\displaystyle\lim_(x\to0^+)\exp\left(\frac{\ln(1+\sin(7x))}x\right)^8 = \exp\left(\lim_(x\to0^+)\frac{\ln(1+\sin(7x))}x\right)^8](https://img.qammunity.org/2022/formulas/mathematics/college/pe15se7sn0vtxd5ja1wzygahpznc9quev2.png)
The remaining limit takes the indeterminate form 0/0, since ln(1 + sin(7x)) approaches ln(1) = 0, and so does x in the denominator. Apply L'Hopital's rule:
![\displaystyle\exp\left(\lim_(x\to0^+)(7\cos(7x))/(1+\sin(7x))\right)^8 = \exp\left(7\right)^8 = \left(e^7\right)^8 = \boxed{e^(56)}](https://img.qammunity.org/2022/formulas/mathematics/college/rflinl448gwq0bxmnq63cr97csnegmu40s.png)